Sale!

Industrial Applications of Machine Learning (Hardback)  | Released: 10 Dec 2018

By: Pedro Larranaga (Author)   Publisher: CRC Press

33.00% Off Original price was: ₹ 14,222.00.Current price is: ₹ 9,529.00.

You save  4,693.00
Industrial Applications of Machine Learning shows how machine learning can be applied to address real-world problems in the fourth industrial revolution, and provides the required knowledge and tools to empower readers to build their own solutions based on theory and practice. The book introduces the fourth industrial revolution and its... Read More

In stock

Buy Now
Ships within 1-2 Business Days

100% Orginal Books

Easy Replacement

Certified product

Secure Checkout

On time delivery

Author:

Pedro Larranaga

Publisher Name:

CRC Press

Language:

English

Binding:

(Hardback)

About The Book
Industrial Applications of Machine Learning shows how machine learning can be applied to address real-world problems in the fourth industrial revolution, and provides the required knowledge and tools to empower readers to build their own solutions based on theory and practice. The book introduces the fourth industrial revolution and its current impact on organizations and society. It explores machine learning fundamentals, and includes four case studies that address a real-world problem in the manufacturing or logistics domains, and approaches machine learning solutions from an application-oriented point of view. The book should be of special interest to researchers interested in real-world industrial problems.Features Describes the opportunities, challenges, issues, and trends offered by the fourth industrial revolution Provides a user-friendly introduction to machine learning with examples of cutting-edge applications in different industrial sectors Includes four case studies addressing real-world industrial problems solved with machine learning techniques A dedicated website for the book contains the datasets of the case studies for the reader's reproduction, enabling the groundwork for future problem-solving Uses of three of the most widespread software and programming languages within the engineering and data science communities, namely R, Python, and Weka About the Author: Pedro Larraaga is Full Professor in Computer Science and Artificial Intelligence at the Universidad Politcnica de Madrid (UPM) since 2007, where he co-leads the Computational Intelligence Group. He received the MSc degree in mathematics (statistics) from the University of Valladolid and the PhD degree in computer science from the University of the Basque Country (excellence award). Before moving to UPM, his academic career was developed at the University of the Basque Country (UPV-EHU) at several faculty ranks: Assistant Professor (1985-1998), Associate Professor (1998-2004) and Full Professor (2004-2007). He earned the habilitation qualification for Full Professor in 2003.Professor Larraaga has served as Expert Manager of Computer Technology area at the Deputy Directorate of research projects of the Spanish Ministry of Science and Innovation (2007-2010). He has been a Member of the Advisory Committee 6.2 (Communication, Computing and Electronics Engineering) of the CNEAI (Spanish Ministry of Education) in 2010-2011. His research interests are primarily in the areas of probabilistic graphical models, data science, metaheuristics, and real applications, like biomedicine, bioinformatics, neuroscience, industry 4.0 and sports. He has published more than 150 papers in impact factor journals and has supervised 26 PhD theses. He is fellow of the European Association for Artificial Intelligence since 2012 and of the Academia Europaea since 2018. He has been awarded the 2013 Spanish National Prize in Computer Science and the Spanish Association for Artificial Intelligence prize in 2018. David Atienza received his B.Sc. degree in Computer Science from Universidad de Burgos, Spain, in 2014, and the M.Sc. degree in Artificial Intelligence from Universidad Politcnica de Madrid, Spain, in 2016, where he is is currently a Ph.D. student.Javier Diaz-Rozo received his M.Eng. degree in Mechanical Engineering from Universidad de los Andes, Bogot, Colombia, in 2001. Additionally, he obtained a M.Sc. degree in Advanced Manufacturing Technology and Systems Management from the University of Manchester, UK, in 2003. Before joining Aingura IIoT as the IIoT Team Leader, he has gathered nearly 15 years of industrial experience working in different positions related to R&D: R&D Project Manager at Ikergune (the Etxe-Tar Group R&D unit) where he was responsible for the advanced manufacturing research area, Senior Consultant in a R&D consulting firm in 2010-2014, R&D Director in a business group mainly dedicated to the wind energy sector in 2008-2010 and Director for the advanced manufacturing area in the ASCAMM Technology Centre in 2006-2008. Currently, he is also a Ph.D. student at UPM. Alberto Ogbechie received his M.Eng. degree in Industrial Engineering from Universidad Pontificia de Comillas, Spain, in 2012. Additionally, he obtained a M.Sc. degree in Artificial Intelligence from Universidad Politcnica de Madrid (UPM) in 2017. He worked for 2 years (2012-2014) at Deloitte Consulting Spain, as Senior Consultant. He is currently working in a private company.

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.