Sale!

Numerical Methods for Nonlinear Elliptic Differential Equations (Hardback)  | Released: 30 Oct 2010

By: Klaus Bohmer (Author)   Publisher: Oxford University Press, USA

33.00% Off 8,796.00

You save 4,332.00
Nonlinear elliptic problems play an increasingly important role in mathematics, science and engineering, creating an exciting interplay between the subjects. This is the first and only book to prove in a systematic and unifying way, stability, convergence and computing results for the different numerical methods for nonlinear elliptic problems. The... Read More

In stock

Buy Now
Ships within 1-2 Business Days

100% Orginal Books

Easy Replacement

Certified product

Secure Checkout

On time delivery

Author:

Klaus Bohmer

Publisher Name:

Oxford University Press, USA

Language:

English

Binding:

(Hardback)

About The Book
Nonlinear elliptic problems play an increasingly important role in mathematics, science and engineering, creating an exciting interplay between the subjects. This is the first and only book to prove in a systematic and unifying way, stability, convergence and computing results for the different numerical methods for nonlinear elliptic problems. The proofs use linearization, compact perturbation of the coercive principal parts, or monotone operator techniques, and approximation theory. Examples are given for linear to fully nonlinear problems (highest derivatives occur nonlinearly) and for the most important space discretization methods: conforming and nonconforming finite element, discontinuous Galerkin, finite difference, wavelet (and, in a volume to follow, spectral and meshfree) methods. A number of specific long open problems are solved here: numerical methods for fully nonlinear elliptic problems, wavelet and meshfree methods for nonlinear problems, and more generalnonlinear boundary conditions. We apply it to all these problems and methods, in particular to eigenvalues, monotone operators, quadrature approximations, and Newton methods. Adaptivity is discussed for finite element and wavelet methods. The book has been written for graduate students and scientists who want to study and to numerically analyze nonlinear elliptic differential equations in Mathematics, Science and Engineering. It can be used as material for graduate courses or advanced seminars.About the Author: Professor Klaus Bohmer took his PhD in Pure and Applied Mathematics in 1969 at the University of Karlsruhe, Germany. He then worked in various universities in Germany and the USA, before becoming full professor at Phillipps University, Marburg, Germany in 1980. He has been a visiting professor at universities in China, the USA and Canada. He retired in 2001.

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.